AI工具人
提示词工程师

ACM博弈知识汇总


有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个

人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏

,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够

取胜。

(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规

定每次至少取一个,最多取m个。最后取光者得胜。

    显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,

后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果
n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走

k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的

取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

    这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十

个,谁能报到100者胜。

(二)威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同
时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。


    这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示

两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们

称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,

10)、(8,13)、(9,15)、(11,18)、(12,20)。

    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有

如下三条性质:

    1。任何自然数都包含在一个且仅有一个奇异局势中。

    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak

-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。

    2。任意操作都可将奇异局势变为非奇异局势。

    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其

他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由

于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

    3。采用适当的方法,可以将非奇异局势变为奇异局势。

    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了

奇异局势(0,0);如果a = ak ,b > bk,那么,取走b  – bk个物体,即变为奇异局

势;如果 a = ak ,  b < bk ,则同时从两堆中拿走 ak – ab + ak个物体,变为奇异局

势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余

的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)

,从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – a

j 即可。

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜

;反之,则后拿者取胜。

    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)


奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近

似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[

j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1

+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异

局势。

(三)尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的
物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首

先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是

(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一

下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情

形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示

这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结

果:

1 =二进制01

2 =二进制10

3 =二进制11 (+)

———————

0 =二进制00 (注意不进位)

    对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b

< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)

b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(

a(+)b)即可。


    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达

到奇异局势(14,21,27)。

    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品

就形成了奇异局势(55,81,102)。

    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4

5,48)。

    例4。我们来实际进行一盘比赛看看:

        甲:(7,8,9)->(1,8,9)奇异局势

        乙:(1,8,9)->(1,8,4)

        甲:(1,8,4)->(1,5,4)奇异局势

        乙:(1,5,4)->(1,4,4)

        甲:(1,4,4)->(0,4,4)奇异局势

        乙:(0,4,4)->(0,4,2)

        甲:(0.4,2)->(0,2,2)奇异局势

        乙:(0,2,2)->(0,2,1)

        甲:(0,2,1)->(0,1,1)奇异局势

        乙:(0,1,1)->(0,1,0)

        甲:(0,1,0)->(0,0,0)奇异局势

        甲胜。

取火柴的游戏

题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 

可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 

题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 

可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。

嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧

先解决第一个问题吧。

定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 

为利己态,用S表示。

[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。

证明:

    若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,

      c = A(1) xor A(2) xor … xor A(n) > 0;

    把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。

    那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而

    A(1) xor A(2) xor … xor x xor … xor A(n)

  = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)

  = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)

  = 0

这就是说从A(t)堆中取出 A(t) – x 根火柴后状态就会从S态变为T态。证毕

[定理2]:T态,取任何一堆的若干根,都将成为S态。

证明:用反证法试试。

      若

      c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;

      c’ = A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = 0;

      则有

c xor c’ = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = A(i) xor A(i’) =0

      进而推出A(i) = A(i’),这与已知矛盾。所以命题得证。

[定理 3]:S态,只要方法正确,必赢。 

  最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。

[定理4]:T态,只要对方法正确,必败。 

  由定理3易得。 

接着来解决第二个问题。

定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。

定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。

 

孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。

[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。 

证明:

S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对 

方取,所以最后一根必己取。败。同理,  T0态必胜#

[定理6]:S1态,只要方法正确,必胜。 

证明:

若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。  # 

[定理7]:S2态不可转一次变为T0态。 

证明:

充裕堆数不可能一次由2变为0。得证。  # 

[定理8]:S2态可一次转变为T2态。 

证明:

由定理1,S态可转变为T态,态可一次转变为T态,又由定理6,S2态不可转一次变为T0态,所以转变的T态为T2态。  # 

[定理9]:T2态,只能转变为S2态或S1态。 

证明:

由定理2,T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。 

[定理10]:S2态,只要方法正确,必胜. 

证明:

方法如下: 

      1)  S2态,就把它变为T2态。(由定理8) 

      2)  对方只能T2转变成S2态或S1态(定理9)

    若转变为S2,  转向1) 

    若转变为S1,  这己必胜。(定理5) 

[定理11]:T2态必输。 

证明:同10。 

综上所述,必输态有:  T2,S0 

          必胜态:    S2,S1,T0. 

两题比较: 

第一题的全过程其实如下: 

S2->T2->S2->T2->  ……  ->T2->S1->T0->S0->T0->……->S0->T0(全0) 

第二题的全过程其实如下: 

S2->T2->S2->T2->  ……  ->T2->S1->S0->T0->S0->……->S0->T0(全0) 

下划线表示胜利一方的取法。  是否发现了他们的惊人相似之处。 

我们不难发现(见加黑部分),S1态可以转变为S0态(第二题做法),也可以转变为 

T0(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为 

T0),也可以使对方得到最后一根(转变为S0)。 

  所以,抢夺S1是制胜的关键! 

  为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.

 

推荐HDOJ题目
http://acm.hdu.edu.cn/showproblem.php?pid=1907
http://acm.hdu.edu.cn/showproblem.php?pid=2509

看完上面的结论,就能顺利解决上面2道了

 

 

S-Nim
http://acm.hdu.edu.cn/showproblem.php?pid=1536
http://acm.hdu.edu.cn/showproblem.php?pid=1944

 

 

 

博弈算法入门小节 1536 1517 1907

小子最近迷途于博弈之中。。。感触颇深。

为了让大家能够在学习博弈的时候少走弯路,最重要的也是为了加深自己的影响,温故而知新,特发此贴与大家共勉。

学博弈先从概念开始:

特别推荐LCY老师的课件:博弈入门。

下载地址:http://acm.hdu.edu.cn/forum/read.php?tid=6875

这个课件个人认为从博弈的基本思想,一直到解博弈的中心算法做了很好的诠释。但是特别要注意的是。课件后面一部分英语写的讲义是重中之重。小子英语很弱,在这困扰很久。现在为大家大概介绍一下。

主要是后继点和SG值的问题:

SG值:一个点的SG值就是一个不等于它的后继点的SG的且大于等于零的最小整数。

后继点:也就是按照题目要求的走法(比如取石子可以取的数量,方法)能够走一步达到的那个点。

具体的有关SG值是怎么运用的希望大家自己多想想。

课件后面有一个1536的代码。可以放在后面做做

看到这里推荐大家做几道题:1846(最简单的博弈水题)

1847(求SG值)

有了上面的知识接下来我们来看看组合博弈(n堆石子)

推荐大家看个资料:

博弈-取石子游戏(推荐等级五星级)
http://acm.hdu.edu.cn/forum/read.php?fid=20&tid=5748
http://hi.baidu.com/netnode/blog/item/30932c2edc7384514fc226ea.html

这里提出了一个奇异状态的问题。看了这篇文章你会发现异或运算在博弈中使用的妙处。当然这里指出的只是组合博弈中一种特殊情况。

王道还是对SG值的求解,但是知道这么一种思路无疑对思维的广度和深度扩展是很有帮助的。

ZZ博弈
http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617

这里介绍了组和博弈的两种大的类型,一种是最后取的是N状态一种是最后取的是P状态,两个状态的解题方法能看懂很有帮助。当然,能够把推导过程理解,吃透无疑是大牛级的做法~小子也佩服的紧~   

    1536题推荐做做这题,这题前面提醒大家是一个求SG值的题目,题目前面是对异或运算运用在组合博弈问题中的很好的解释。当然题目本身是有所不同的。因为在这里面对取法有所要求。那么这样就回归到了解决博弈问题的王道算法——求SG值上。

    有关运用求SG值的博弈题目有: 1850(也可基于奇异状态异或)

1848(中和的大斐波那契数列的典型求SG值题)

1517(个人认为有点猥琐的题目。。。。在此题上困扰很久。当然搞出来很开心。小子是用比较规矩的求SG值的方法求出来的,但是论坛有人对其推出来了规律,这里佩服一下,大家可以学习一下)

1079(更猥琐的题目,对新手要求较高,因为按传统方法需要比较细致的模拟加对边角状态的考虑,同样有人推出来了公式)

当你全部看完以上的东西。做完以上的题目的话。。。小子恭喜你~你博弈入门了~~~~

    这里小子告诉大家。博弈很强大。学习要耐心~谢谢

Current System Time : 2008-12-11 19:16:03

ACM课作业:

1001 Brave Game

1002 Good Luck in CET-4 Everybody!

1003 Fibonacci again and again

1004 Rabbit and Grass

1005 Being a Good Boy in Spring Festival

1006 Public Sale 

1007 悼念512汶川大地震遇难同胞——选拔志愿者 

1008 kiki’s game 

1009 Calendar Game 

1010 A Multiplication Game 

1011 Digital Deletions 

1012 S-Nim
http://acm.hdu.edu.cn/forum/read.php?tid=11339&fpage=0&toread=&page=1

 

 

1536的参考代码

本部分设定了隐藏,您已回复过了,以下是隐藏的内容

Copy code

//博弈-基于求SG值

//Accepted 1536 578MS 416K 904 B

#include”iostream”

using namespace std;

int f[101],sg[10001],k;

int mex(int b)

{

    int a[101]={0},i;

    for(i=0;i<k;i++)

    {

        if(b-f<0)//b-f后继点

            break;

        if(sg[b-f]==-1)

        {

            sg[b-f]=mex(b-f);

        }

        a[sg[b-f]]=1;

    }

    for(i=0;i<k;i++)

        if(!a)

        {

            return i;

        }

}

int main()

{

    int i,t,n,s,bead,j;

    while(cin >> k,k)

    {

        for(i=0;i<k;i++)

        {

            cin >> f;

        }

        memset(sg,-1,sizeof(sg));

        for(i=0;i<k;i++)

            for(j=i+1;j<k;j++)

                if(f>f[j])

                {

                    f+=f[j];

                    f[j]=f-f[j];

                    f-=f[j];

                }

        sg[0]=0;

        cin >> t;

        while(t–)

        {

            cin >> n;

            s=0;

            while(n–)

            {

                cin >> bead;//该堆的成员个数

                if(sg[bead]==-1)

                    sg[bead]=mex(bead);

                s=s^sg[bead];

            }

            if(s==0)

                cout << “L”;

            else

                cout << “W”;

        }

        cout << endl;

    }

    return 0;

}

 

1517参考代码

本部分设定了隐藏,您已回复过了,以下是隐藏的内容

Copy code

//博弈-基于求SG值

//Accepted 1517 234MS 0K 837 B

#include”iostream”

using namespace std;

int main()

{

    __int64 a[7000]={1},min,n;

    int p[10],sg[7000],i,j,k;

    for(i=2;i<10;p=0,i++);

    for(i=1;i<7000;i++)

    {

        for(j=2,min=-1;j<10;j++)

            if(min==-1||a[p[j]]*j<a[p[min]]*min)

                min=j;

        a=a[p[min]]*min;

        min=a[p[min]]*min;

        if(a>=5000000000)

            break;

        for(j=2;j<10;j++)

            if(a[p[j]]*j==min)

                p[j]++;

    }//从小到大求出所有乘积

    while(scanf(“%I64d”,&n)!=EOF)

    {

        for(i=0;i<7000;i++)

        {

            sg=0;

            if(a>=n)

                break;

        }

        for(j=i-1;a[j]*9>=n&&j>=0;j–)

            sg[j]=1;

        while(j>=0)

        {

            for(k=j+1;k<i&&a[j]*9>=a[k];k++)

                if(a[k]%a[j]==0&&sg[k]==0)

                {

                    sg[j]=1;

                    break;

                }

            j–;

        }

        puts(sg[0]?”Stan wins.”:”Ollie wins.”);

    }

    return 0;

}

这里感谢shǎ崽同学的一段代码让小子学会了puts的妙用

 

1907参考代码

本部分设定了隐藏,您已回复过了,以下是隐藏的内容

#include”iostream”

using namespace std;

int main()

{

    int temp,t,n,s,x,i;

    cin >> t;

    while(t–)

    {

        cin >> n;

        for(i=s=temp=0;i<n;i++)

        {

            cin >> x;

            if(x>1)    temp=1;

            s^=x;

        }

        if((s&&temp)||(!s&&!temp))

            cout << “John” << endl;

        else

            cout << “Brother” << endl;

    }

    return 0;

}


赞(0) 打赏
未经允许不得转载:XINDOO » ACM博弈知识汇总

评论 抢沙发

觉得文章有用就打赏一下文章作者

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫打赏

微信扫一扫打赏

登录

找回密码

注册